
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Future Generation Computer Systems 32 (2014) 253–259

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Effective real-time scheduling algorithm for cyber physical
systems society
Sanghyuk Park a, Jai-Hoon Kim b,∗, Geoffrey Fox c

a Department of Network Centric Warfare Engineering, Ajou University, South Korea
b Graduate School of Information and Communication, Ajou University, South Korea
c Pervasive Technology Institute, Indiana University, Bloomington, IN, USA

h i g h l i g h t s

• Computers and physical systems are tightly coupled in cyber physical society.
• Conventional systems only consider cyber space.
• CPS should also consider physical, socio and mental space.
• Proposed scheduling algorithm considering physical factors.
• Efficiency of algorithm is verified by mathematical analysis and simulation.

a r t i c l e i n f o

Article history:
Received 4 July 2012
Received in revised form
29 September 2013
Accepted 4 October 2013
Available online 12 October 2013

Keywords:
CPS (Cyber Physical System)
Real-time scheduling algorithm
LST (Least Slack Time First)
ELST (Effective Least Slack Time First)
H-ELST (Heuristic Effective Least Slack Time
First)

a b s t r a c t

CPS (Cyber Physical Systems) tightly couple their cyber factor and physical factor in distributed computing
or Grids environments to provide real-time services such as avionics, transportation, manufacturing
processes, energy, healthcare, etc. We need to consider not only the cyber space (CPU, network, storage
systems, etc.) and the physical space (location, migration, etc.) but also the socio space and mental space
for the precise analysis and useful services. In this paper, real-time scheduling algorithms, namely ELST
(Effective Least Slack Time First) and H-ELST (Heuristic-Effective Least Slack Time First), are presented for
CPS, where servicing node needs to move to serviced node for real-time services. We measure the real-
time performance in terms of deadline meet ratio by mathematical analysis and simulations. The results
show that our algorithms reduce a deadline miss ratio approximately up to 50% and 20% compared to
the conventional real-time scheduling algorithm, FIFO (First In First Out) and LST (Least Slack Time First),
respectively.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Timing issues are critical in real-time systems such as robot
control [1,2], NCO (Network Centric Operations) systems [3–6],
flight control, on-line multimedia systems [7], and real-time stock
trading system, etc. [8–10]. Many real-time scheduling algorithms
such as RM (rate monotonic) [11,12], EDF (earliest deadline first)
[12–14], and LST (least slack time first) [12,14] deal with resource
(CPU and network bandwidth) scheduling to maximize real-time
performance (e.g., deadline meet ratio) [7,14]. As CPS (cyber phys-
ical system [15–18] and cyber physical society [19–21]) such as
avionics, transportation, manufacturing processes, energy, health-

∗ Corresponding author. Tel.: +82 31 219 2546; fax: +82 31 219 1614.
E-mail address: jaikim@ajou.ac.kr (J.-H. Kim).

care, in which computers and physical systems (also, society and
mental) are tightly coupled and timing is critical, is fast growing,
real-time scheduling for CPS becomes the new research issues in
the real-time systems [22,23].

In other aspects, as real-time applications become complex and
relevant tasks and resources are widely distributed, we have to
study the real-time scheduling in distributed computing infras-
tructures and Grids. For examples, in Grids infrastructures (e.g.,
EGI (European Grid Infrastructure) [24], SEE-GRID (South Eastern
European Grid-enabled e-Infrastructure) [25], and EELA (E-science
grid facility for Europe and Latin America) [26])many tasks concur-
rently request various types of distributed resources. Middleware
has to coordinate the resource allocation to provide services and
guarantee a SLA. In these distributed environments, the real-time
scheduling must consider transfer delays as task and data migra-
tions among nodes having computing resources are common. Red
Hat EnterpriseMRG (Messaging, Real time, andGrid) Real time [27]

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.10.003



Author's personal copy

254 S. Park et al. / Future Generation Computer Systems 32 (2014) 253–259

Table 1
Real-time scheduling for CPS.

Conventional real-time scheduling Real-time scheduling for CPS

Scheduling resources CPU, BW, memory, I/O Servicing node
Scheduling environment Cyber environment Cyber and physical environment
Scheduling parameters Cyber factors (Period, execution time, release time, deadline, etc.) Cyber factors and physical factors (period, execution

time, release time, deadline, migration delay time, etc.)
Migration No migration is required for CPU and Job. Migration is required for CPU and Job.

∗ We consider CPU is serving node and Job is serviced node
Well-known Scheduling algorithm RM, EDF, LST, etc. None
Spatial issues Do not consider spatial issues Physical migration delay time (between servicing node to

serviced node)
Considering issues Execution time, release time, deadline, laxity Execution time, release time, effective deadline

(deadline—moving time), effective laxity (laxity—moving
delay time)

Fig. 1. Real-time scheduling for CPS.

provides a high level of predictability for consistent low-latency
response times to meet the requirement of time-sensitive work-
loads. Many large-scale distributed applications require real-time
responses to meet soft deadlines. Ref. [28] design and imple-
ment the real-time volunteer computing platform called RT-BOINC
to schedule the real-time task and execute on the volunteer re-
sources.

Many real-time scheduling algorithms have been proposed and
widely used [11,12,14]. However, in cyber physical systems soci-
ety, we need to consider not only cyber space (CPU, network, stor-
age systems, etc.) and physical space (location, migration, etc.) but
also socio space and mental space [19–21]. Fig. 1 shows the real-
time scheduling model for cyber physical systems society [19–21].
Effective release time anddeadline of real-time tasksmaybediffer-
ent depending on the location and physicalmigration delay time of
nodes participating in CPS. Real-time scheduling algorithms have
to be modified to include spatial factors. Conventional cyber real-
time system schedules CPU or network bandwidth. However, in
real-time scheduling for CPS, location is matter. Location of nodes
in CPS affects the effective release time and deadline.

In this paper, we propose new real-time scheduling algorithms
for CPS, where the servicing node needs to move to serviced node
for real-time services. If we assume, for an example, there are
many scattered customers requesting real-time services but only
one servicing staff exists in the area, real-time scheduling is nec-
essary to maximize the performance (e.g., deadline meet ratio). In
this case, the conventional real-time scheduling algorithm is not
proper because the real-time scheduling does not consider physi-
cal factors (e.g., locations of customer of servicing staff, migration
delay between the locations, etc.). In CPS, the physical factors, how-
ever, are not entirely predictable or easy to change [10], leading to
problems such as missed task deadlines, faults of cyber systems,
and faults of physical systems [11,12]. Such problems are very se-
rious in CPS and could cause widespread social upheaval, as well
as huge inconvenience and economic loss for individuals and in-
dustry alike. We propose a method of solving such problems by
introducing new real-time scheduling algorithms for CPS.

Real-time scheduling for CPS differs from conventional real-
time scheduling in many aspects. Table 1 highlights the key dif-
ferences between the conventional real-time scheduling and the
CPS real-time scheduling. As in many kinds of CPS, where servic-
ing nodes must move to the location to perform real-time ser-
vices, time required for moving has to be included in the real-time
scheduling. In some CPS cases, servicing node cannot move to ser-
viced nodes. As a futurework, wewill consider another casewhere
serviced nodes move to servicing node. Also, we will make real-
time scheduling algorithms considering social factors mentioned
in Refs. [19–21] such as socio space, mental space, etc.

The remainder of this paper is organized as follows. Section 2
presents the real-time scheduling algorithms for CPS. Our algo-
rithms are evaluated in Section 3. Finally, we conclude the paper
and point out the future works.

2. Real-time scheduling model in CPS

In this section, we propose a real-time scheduling for CPS and
compare the real-time performance (deadlinemeet ratio) between
the conventional real-time scheduling and the proposed real-time
scheduling for CPS. We assume parameters for real-time systems
as follows:

• li: slack (laxity) time of task i (exponential distribution of aver-
age 1/λ)

• ei: execution time of task i (evenly distributed on [0, E])
• mi: migration time of servicing(computing) node to task(serv-

iced node) i (evenly distributed in [0,M]).

Deadline meet ratio (DM) of task A without confliction against
other tasks is the probability of the slack time lA being greater than
the moving timemA (servicing nodemoving to serviced node (task
A) within slack time lA). As distribution of lA is λe−λt , the deadline
meet ratio of a task A (DMA (λ,m)) is computed as follows:

DMA(λ,m) =


∞

m
λe−λtdt = e−λm. (1)

As m is assumed to evenly distributed [0,M], an average dead-
line meet ratio is:

Mean(DMA(λ,m)) =
1
M

 M

0
e−λmdm =

1
λM

(1 − e−λM). (2)

For a simple demonstration, we compute a deadline meet ratio
when two tasks conflict each other. (We also perform simulation in
more realistic scenarios as described in Section 3.2.) We compute
deadline meet ratios for three different scheduling algorithms:
FIFO (First In First Service), LST (Least Slack Time First), ELST
(Effective Least Slack Time First for CPS) scheduling algorithms.



Author's personal copy

S. Park et al. / Future Generation Computer Systems 32 (2014) 253–259 255

2.1. FIFO (first in first out)

We assume that the task A arrived just before the other task B. A
deadlinemeet ratio of task A is mean (DMA (λ,m)) as task A is per-
formedwithout confliction. As task B can be scheduled after task A,
the deadlinemeet ratio of task B is the probability of the slack time
of task B (lB) being greater than mA + eA + mB. Thus, the deadline
meet ratio of task B following task A (Mean(DMB (λ,mA, eA,mB)))
is computed as follows:

Mean(DMB(λ,mA, eA,mB))

=
1

M2E

 M

0

 E

0

 M

0
e−λ(mA+eA+mB)dmAdeAdmB

=
(1 − e−λM)2(1 − e−λE)

λ3M2E
. (3)

Now, we obtain the deadline meet ratio of FIFO scheduling
algorithm when task A and task B conflict.

DMfifo =
{Mean(DMA(λ,m)) + Mean(DMB(λ,mA, eA,mB))}

2

=


1

λM
(1 − e−λM) +

(1 − e−λM)2(1 − e−λE)

λ3M2E

 
2. (4)

2.2. LST (least slack time first)

When task A and task B conflict, a task with least slack time is
scheduled first. When we assume that the slack time of task A is
shorter than that of task B, the slack time of task A is the expo-
nential distribution (2λe−2λt) of average 1/(2λ) while the slack
of task B is the exponential distribution of 2λe−λt

− 2λe−2λt
=

2λe−λt (1−λe−λt). (We can obtain it by using the Markov model.)
A deadline meet ratio of task A is mean (DMA (2λ,m)) as task A is
performed without confliction.

As task B of longer slack time can be scheduled after task A of
shorter slack time, the deadlinemeet ratio of task B is the probabil-
ity of the slack time of task B (lB) being greater thanmA + eA +mB.
Thus, an average deadline meet ratio of task B following task A is
computed as follows:

1
M2E

 M

0

 E

0

 M

0
(2e−λ(mA+eA+mB)

− e−2λ(mA+eA+mB))dmAdeAdmB

=
2(1 − e−λM)

2
(1 − e−λE)

λ3M2E
−

(1 − e−2λM)2(1 − e−2λE)

8λ3M2E
. (5)

Now, we obtain the deadline meet ratio of the LST scheduling
algorithm when the task A and task B conflict.

DMlst = Mean(DMA(2λ,m))

+


2(1 − e−λM)

2
(1 − e−λE)

λ3M2E

−
(1 − e−2λM)2(1 − e−2λE)

8λ3M2E

 
2

=
1

2λM
(1 − e−2λM)

+


2(1 − e−λM)

2
(1 − e−λE)

λ3M2E

−
(1 − e−2λM)2(1 − e−2λE)

8λ3M2E

 
2. (6)

2.3. ELST (effective least slack time first)

Preemptive LST is an optimal algorithm in real-time scheduling
algorithm. However, in CPS, we need to consider physical environ-
ments to improve the deadline meet ratio. As an example, we have
to consider the moving time of computing (servicing) node to the
location of task serviced. Let leff,i be an effective slack time of task
i (slack time including moving time), then leff,i is computed as fol-
lows:

leff,i = li − mi. (7)

Now, we compute the leff,i. As the distribution of li is λe−λt , leff,i
(when leff,i > 0) distribution is computed as follows:

1
M

 M

0
λe−λ(t+m)dm =

e−λt

M
(1 − e−λM). (8)

leff,i (when—M < leff,i < 0) the distribution is computed as
follows:

1
M

 M

−t
λe−λ(t+m)dm =

1
M

(1 − e−λ(t+M)). (9)

An average deadlinemeet ratio of task A (without conflict) is the
probability of leff,i > 0.

Mean(DMA(λ,m)) =


∞

0

e−λt

M
(1 − e−λM)dt

=
1

λM
(1 − e−λM). (10)

The deadline meet ratio of task B following task A is:

DMB(λ,mA, eA,mB) =


∞

mA+eA

e−λt

M
(1 − e−λM)dt

=
(1 − e−λM)

λM
e−λ(mA +eA). (11)

As we assume mA and eA are evenly distributed on [0,M] and
[0, E], respectively, mean (DMB (λ,mA, eA,mB)) is computed as:

Mean(DMB(λ,mA, eA,mB)) =
1
ME

 E

0

 M

0

(1 − e−λM)

λM

× e−λ(mA+eA)dmAdeA

=
(1 − e−λM)2(1 − e−λE)

λ3M2E
. (12)

We can find that mean (DMA (λ,m)) and mean DMB (λ,mA,
eA,mB) are same as those obtained in Section 2.1. As parameters
using in two analyses are the same but leff,i = li, −mi, two deadline
meet ratios computed in 2.1 and 2.3 must be the same. (One uses
li > mi while the other leff,i = (li, − mi) > 0, which is basically
same, to compute the deadline meet ratio.)

2.4. O-ELST (optimal effective least slack time first)

As the ELST algorithm cannot improve the real-time perfor-
mance, we consider the optimal algorithm which changes sched-
ule for two tasks (task A and task B) when the changed schedule
can improve the real-time performance. Let p be the probability of
meeting the deadline of firstly scheduled task (task A).

P = Mean(DMA(λ,m)) =


∞

0

e−λt

M
(1 − e−λM)dt

=
1

λM
(1 − e−λM). (13)



Author's personal copy

256 S. Park et al. / Future Generation Computer Systems 32 (2014) 253–259

Table 2
O-ELST scheduling algorithm when task A and task B conflict.

Deadline meet/miss on schedule
A → B (A followed by B)

Probability O-ELST schedule Probability of O-ELST choosing this
schedule

No. of task
meeting deadline

meet A, meet B p ∗ q A → B p ∗ q 2

meet A, miss B p(1 − q) Change schedule B → A if meet both A and B p(1 − q) ∗ (p − q)/(1 − q) ∗ q/p 2
A → Bif B → A is not better p(1−q)∗{1−(p−q)/(1−q)∗q/p} 1

miss A, meet B (1 − p)q A → B (B → A) (1 − p)q 1

miss A, miss B (1 − p) ∗ (1 − q) Schedule B → A if meet B (1 − p)(1 − q) ∗ (p − q)/(1 − q) 1
A → B(if B → A is not better) (1−p)(1−q)∗{1−(p−q)/(1−q)} 0

Let q be the probability of meeting the deadline of the secondly
scheduled task (task B).

q = Mean(DMB(λ,mA, eA,mB))

=
1
ME

 E

0

 M

0

(1 − e−λM)

λM
e−λ(mA+eA)dmAdeA

=
(1 − e−λM)2(1 − e−λE)

λ3M2E
. (14)

We use somewhat different approach from LST and ELST
scheduling to compute the deadlinemeet ratio for O-ELST schedul-
ing. O-ELST scheduling considers the moving time as well as the
slack time to improve the deadline meet ratio. When task A and
task B conflict, O-ELST schedules tasks (A followed by B or B fol-
lowed by A), whichmaximizes a deadlinemeet ratio. On a schedule
of A followed by B, there are four cases:

• Both A and B meet the deadline (probability of pq): in this
case, O-ELST does not change the schedule (choose the schedule
of A followed by B).

• A only meets the deadline (probability of p(1 − q)): in this
case, O-ELST changes schedule (B followed by A) if both A and B
meet the deadline. Probability of meeting deadline for both A and
B by changing schedule is (p − q)/(1 − q) ∗ q/p. ((probability of
B meeting the deadline at scheduling of B followed by A on the
condition of missing the deadline at scheduling of A followed by
B) ∗ (probability of Ameeting the deadline also even at scheduling
of B followed by A on the condition of meeting the deadline at
scheduling of A followed by B)).

• B onlymeets the deadline (probability of (1−p)q): in this case,
A cannot meet deadline at any scheduling.

•Neither A nor Bmeets the deadline (probability of (1−p) (1−

q)): in this case, O-ELST changes schedule (B followed by A) if B
meets the deadline. Probability of meeting the deadline for B by
changing schedule is (p − q)/(1 − q) (probability of B meeting
the deadline at scheduling of B followed by A on the condition of
missing the deadline at scheduling of A followed by B). In this case,
A cannot meet deadline at any scheduling.

The other schedule, B followed by A, has also four cases. O-ELST
chooses the schedule which maximizes the deadline meet ratio by
considering the moving time as well as the slack time.

From Table 2, we can obtain the deadline meet ratio of O-ELST
scheduling algorithm when task A and task B conflict. We can
compute the expected number of tasks meeting the deadline by
summation of products of columns ‘‘probability of O-ELST choosing
this schedule’’ and ‘‘number of task meeting deadline’’. After that,
the deadline meet ratio is the half of the expected number of tasks
meeting the deadline as there are two

DMo-elst = [2pq + 2p(1 − q) ∗ (p − q)/(1 − q) ∗ q/p
+ p(1 − q) ∗ {1 − (p − q)/(1 − q) ∗ q/p}
+ (1 − p)q + (1 − p)(1 − q) ∗ (p − q)/(1 − q)]/2

= (2p − p2 + 2pq − q2)/2,

where p = Mean(DMA(λ,m)) =
1

λM
(1 − e−λM) and

q = Mean(DMB(λ,mA, eA,mB))

=
(1 − e−λM)2(1 − εe−λE)

λ3M2E
. (15)

2.5. Heuristic ELST(H-ELST) algorithm

In the Section 2.3, we analyzed the performance of O-ELST
only with two serviced nodes. However, this method is not
practical because time complexity becomes huge as the number of
nodes increases. Now, we briefly explain H-ELST (Heuristic-ELST)
algorithm to reduce the time complexity while maintaining the
deadline meet ratio. Real-Time H-ELST scheduling algorithm is as
follows:

• modify the LST scheduling algorithm by weighting on the slack
time and physical migration time;

• give priority to serviced nodes with not only small slack time
but also small moving time: as the weighted sum of slack time
and moving time decreases, the priority increases;

• give ‘‘α’’ (0 < α < 1) weight to the slack time and ‘‘1 − α’’
weight to the migration time. (Performance will depend on the
value of the weight parameter α;)

• focus on physical factors (migration delay time, etc.) as well
as cyber factors (period, execution time, release time, deadline,
etc.).

3. Performance comparisons for real-time CPS

3.1. Real-time performance analysis by mathematical analysis

We measure the performance by varying parameters, λ and
M . (We assume that M = E for easy analysis and comparison.)
We compare the performance among FIFO, LST, and O-ELST. Fig. 2
shows deadline meet ratios for FIFO, LST, and O-ELST scheduling
algorithms. Fig. 3 shows relative views of Fig. 2 (relative deadline
miss ratios of O-ELST to FIFO and O-ELST to LST). O-ELST algorithm
can reduce deadline meet ratios up to 49% and 22% comparing to
FIFO and LST algorithms, respectively.

3.2. Real-time performance analysis by simulation

We measure the performance of the real-time scheduling
algorithmsby simulation to verify the performance of the proposed
real-time scheduling for CPS in the general cases of many tasks
conflicting. We use the parameters for real-time scheduling
algorithm in the simulation as follows:

• n: number of nodes (tasks) requiring real-time service, 2 < n <
8

• ns: number of nodes performing real-time service, ns = 1
• α: weight of execution time (weight of migration time is 1 −

α, 0 < α < 1)



Author's personal copy

S. Park et al. / Future Generation Computer Systems 32 (2014) 253–259 257

(a) Deadline meet ratio (FIFO). (b) Deadline meet ratio (LST).

(c) Deadline meet ratio (O-ELST).

Fig. 2. Deadline meet ratios for FIFO, LST, and O-ELST scheduling algorithms.

(a) Relative deadline miss ratio (O-ELST to FIFO). (b) Relative deadline miss ratio (O-ELST to LST).

Fig. 3. Relative deadline miss ratios of O-ELST to FIFO and O-ELST to LST.

• ei: execution time at node i with exponential distribution of
average 1/λ (λ = 0.018) (Fig. 4(a)), λ = 0.2 (Fig. 4(b))

• di: deadline at the node iwith variable range
• mci: moving distance between computing node c and serviced

node i (mci =


(xi − xc)2 + (yi − yc)2, position of node i (xi, yi)
and position of computing node c (xc, yc) are evenly distributed
in a square of 100 by 100)

• ri: release time, ri = 0
• number of simulations: 10000 times.

We compare the performance of our algorithm in terms of a
deadline meet ratio with LST, ELST, and H-ELST in the general case
of many tasks conflicting. The results of performance evaluation
results are shown in Fig. 4.

Although the results differ depending on ‘‘α’’, H-ELST shows
excellent performance for deadline meet ratio. (Values between
0.1–0.9 are compared and ‘‘α’’ of the best performance is selected
in the simulation. The value 0.6 is applied in this simulation. Future
work is required to find a proper weight of ‘‘α’’).



Author's personal copy

258 S. Park et al. / Future Generation Computer Systems 32 (2014) 253–259

(a) When cyber factor is quite big in comparison to physical factor. (b) When cyber factor is quite small in comparison to physical factor.

Fig. 4. Deadline meet ratios for LST, ELST and H-ELST scheduling algorithms.

ELST algorithm and LST algorithm show difference in perfor-
mance depending on the ratio of the cyber factor (ei) and the phys-
ical factor (mi). As shown in Fig. 4, depending on the ratio of cyber
factor (ei) and the physical factor (mi), the conventional LST algo-
rithm shows better performance than the ELST algorithm at certain
conditions. Although not included in the paper, the EEDF(Effective
Earliest Deadline First) algorithm shows better performance than
the EDF algorithm in the simulation when the cyber factor (ei) is
much larger than the physical factor (mi).

Summarizing the simulation results, ELST and EEDF scheduling
algorithms show good performance for deadline meet ratio when
the cyber factor (ei) ismuch larger than the physical factor (mi). On
the other hand, when the physical factor (ei) is much larger than
the cyber factor (mi), the conventional LST and EDF algorithms
show better performance than the ELST and EEDF algorithms,
respectively. However, the H-ELST algorithm appliedwith a proper
‘‘α’’ weight shows excellent performance in many conditions. As
a result, H-ELST scheduling algorithms can reduce deadline meet
ratios by up to 20% compared to LST.

4. Conclusions and future work

As conventional real-time scheduling algorithm considers sys-
tem resources in cyber space such as CPU, network bandwidth, and
memory, it is not proper to apply in CPS. We propose a real-time
scheduling algorithm for cyber physical systems society, where
physical factors (e.g., location, migration delay time, etc.) affect the
real-time performance. To demonstrate the real-time scheduling
algorithm for CPS, we assume a simple CPS environment in which
the computing node moves around physically distributed tasks to
perform real-time services. Performance measurement by math-
ematical analysis and simulations shows that O-ELST (Optimal
Effective Least Slack Time First) algorithm reduces a deadline miss
ratio up to 49% and 22% comparing to FIFO (First In First Out) and
LST (Least Slack Time First), respectively. Simulation results also
show that the real-time scheduling algorithm for CPS (H-ELST:
Heuristic Effective Least Slack Time First) can improve the per-
formance by including physical factor (moving time). As a future
work, we plan to perform extensive simulations to verify the per-
formance of H-ELST in more realistic environment. In addition, we
will study various algorithms for CPS considering social factors.

Acknowledgments

This research is supported by the Basic Science Research
Program through the National Research Foundation of Korea (NRF)
funded by theMinistry of Education, Science and Technology (NRF-
2012R1A1A2A10041537).

References

[1] B. Gerkey, S. Chitta, M. Beetz, L.E. Kavraki, Real-time guidance under MRI, IEEE
Engineering in Medicine and Biology Magazine 29 (2) (2010) 78–86.

[2] C. Domínguez, H. Hassan, A. Crespo, Real-time embedded architecture
for improving pervasive robot services, International Journal of Software
Engineering and its Application 2 (1) (2008) 79–90.

[3] S.-H. Park, J.-H. Kim, C.-H. Han, K.-S. Kim, Effective one-to-one correspondence
method of O(N2Log(N)) complexity between distributed units, International
Journal of Advanced Robotic Systems 9 (2012) 1–7.

[4] S.-H. Park, J.-H. Kim, C.-H. Han, The extended-military multimedia systems
based on real-time scheduling scheme, Journal of the Institute of Electronics
Engineers of Korea 48-CI (1) (2011) 26–32.

[5] C.-H. Han, Y.-H. Min, S.-H. Park, J.-H. Kim, Minimum-cost path finding
algorithm in real-time for computer generated force, Journal of the Institute
of Electronics Engineers of Korea 48-CI (1) (2011) 17–25.

[6] S.-H. Park, J.-H. Kim, Real-time NCW systems using distributed processing, in:
Kisse, Korea Computer Congress, Vol. 36, 2009, pp. 245–249.

[7] W.H. Yuan, K. Nahrstedt, Energy-efficient soft real-time CPU scheduling for
mobile multimedia systems, in: SOSP’03 Proceedings of the Nineteenth ACM
SymposiumonOperating Systems Principles, Vol. 37, No. 5, 2003, pp. 149–163.

[8] A. Abdelli, A much compact abstraction of the state space of real time pre-
emptive systems, International Journal of Advanced Science and Technology
27 (2011) 45–58.

[9] J. Wang, S. Han, K.-Y. Lam, K. Mok, Maintaining data temporal consistency in
distributed real-time systems, Real-Time Systems 48 (4) (2012) 387–429.

[10] Q.Y. Dai, R.Y. Zhong, M.L. Wang, X.D. Liu, Q. Liu, RFID-enable real-time multi-
experiment training center management system, International Journal of
Advanced Science and Technology 7 (2009) 27–48.

[11] C.L. Liu, J. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, Journal of the ACM 20 (1973) 46–61.

[12] A. Burns, Scheduling hard real-time systems: a review, Software Engineering
Journal 6 (1991) 116–128.

[13] Z.R.M. Azmi, K.A. Bakar, M.S. Shamsir, W.N.W. Manan, A.H. Abdullah,
Performance comparison of priority rule scheduling algorithms using different
inter arrival time jobs in grid environment, International Journal of Advanced
Science and Technology 4 (3) (2011) 61–70.

[14] J.W.S.W. Liu, Real-Time Systems, Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2000.

[15] E.A. Lee, CPS foundations, in: DAC’10 Proceedings of the 47th Design
Automation Conference, June 13–18, Anaheim, California. USA, 2010,
pp. 737–742.

[16] R.R. Rajkumar, I.S. Lee, L. Sha, J. Stankovic, Cyber-physical systems: the next
computing revolution, in: DAC’10 Proceedings of the 47th Design Automation
Conference, June 13–18, Anaheim, California. USA, 2010, pp. 731–736.

[17] J.C. Eidson, E.A. Lee, S. Matic, S.A. Seshia, J. Zou, Distributed real-time software
for cyber-physical systems, Proceedings of the IEEE 100 (2011) 45–59.

[18] E.A. Lee, Computing needs time, Communications of the ACM 52 (5) (2009)
70–79.

[19] Hai Zhuge, Cyber physical society, in: Sixth International Conference on
Semantics, Knowledge and Grids, 2010, pp. 1–8.

[20] Hai Zhuge, Semantic linking through spaces for cyber-physical-socio intelli-
gence: a methodology, Artificial Intelligence 175 (2011) 988–1019.

[21] Hai Zhuge, Yunpeng Xing, Probabilistic resource space model for managing
resources in cyber-physical society, IEEE Transactions on Services Computing
5 (3) (2012) 404–421.

[22] A. Banerjee, Ensuring safety, security, and sustainability of mission-critical
cyber-physical systems, Proceedings of the IEEE 100 (1) (2012) 283–299.

[23] J.-H. Kim, S.-H. Park, Geoffery Fox, Real-time scheduling in cyber-physical
systems, in: International Conference, CCA, 2012, p. 69.



Author's personal copy

S. Park et al. / Future Generation Computer Systems 32 (2014) 253–259 259

[24] Tiziana Ferrari, Luciano Gaido, Resources and services of the EGEE production
infrastructure, Journal of Grid Computing 9 (2) (2011) 119–133.

[25] Antun Balaž, et al., Development of grid e-Infrastructure in South-Eastern
Europe, Journal of Grid Computing 9 (2) (2011) 135–154.

[26] Francisco Brasileiro, et al., Using a simple prioritisation mechanism to
effectively interoperate service and opportunistic grids in the EELA-2 e-
Infrastructure, Journal of Grid Computing 9 (2) (2011) 241–257.

[27] Bryan Che, Red hat enterprise MRG: messaging, realtime, and grid, www.
redhat.com.

[28] Sangho Yi, et al. Towards real-time, volunteer distributed computing, in: 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid, 2011, pp. 154–163.

Sanghyuk Park received his B.S. degree in Ocean Engi-
neering from KoreaMaritime University, Busan, South Ko-
rea, in 2000 and his Ph.D. degree in NCW (Network Centric
Warfare), from Ajou University, Suwon, Korea, in 2013. He
is aMarine Corps officer of the Republic of Korea. His main
research interests include NCW (Network Centric War-
fare), Real-Time System, Distributed System, Mobile Com-
puting and Cyber Physical Systems.

Jai-Hoon Kim received his B.S. degree in Control and
Instrumentation Engineering from the Seoul National Uni-
versity, Seoul, South Korea, in 1984, M.S. degree in Com-
puter Science from the Indiana University, USA, in 1993,
and his Ph.D. degree in Computer Science from the Texas
A&M University, USA, in 1997. He is currently a profes-
sor at the Information and Computer Engineering depart-
ment, Ajou University, South Korea. His research interests
include Distributed Systems, Real-Time systems, and Mo-
bile Computing.

Geoffrey C. Fox received a Ph.D. in Theoretical Physics
fromCambridge University and is now a professor of Com-
puter Science, Informatics, and Physics at Indiana Univer-
sity. He is the director of the Community Grids Laboratory
of the Pervasive Technology Laboratories at Indiana Uni-
versity. He previously held positions at Caltech, Syracuse
University and Florida State University. He has published
over 600 papers in physics and computer science and been
a major author on four books. Fox currently works in ap-
plying computer science to Defense, Earthquake and Ice-
sheet Science and Chemical Informatics. He is involved in

several projects to enhance the capabilities of Minority Serving Institutions. His
main research interests include Practical Computer Science with applications.


